Analysis and Comparison of Two General
Sparse Solvers for Distributed
Memory Computers

PATRICK R. AMESTOY

ENSEEIHT-IRIT

IAIN S. DUFF

CERFACS and Rutherford Appleton Laboratory
JEAN-YVES LEXCELLENT

ENSEEIHT-IRIT and LIP-ENS Lyon

and

XIAOYE S. LI

NERSC-Lawrence Berkeley National Labroratory

This paper provides a comprehensive study and comparison of two state-of-the-art direct solvers
for large sparse sets of linear equations on large-scale distributed-memory computers. One is a
multifrontal solver called MUMPS, the other is a supernodal solver called SuperLU. We describe
the main algorithmic features of the two solvers and compare their performance characteristics
with respect to uniprocessor speed, interprocessor communication, and memory requirements. For
both solvers, preorderings for numerical stability and sparsity play an important role in achieving
high parallel efficiency. We analyse the results with various ordering algorithms. Our performance
analysis is based on data obtained from runs on a 512-processor Cray T3E using a set of matrices
from real applications. We also use regular 3D grid problems to study the scalability of the two
solvers.

This work was supported by the France-Berkeley Fund and the National Energy Research Sci-
entific Computing Center (NERSC) which is supported by the Director, Office of Advanced Scien-
tific Computing Research, Division of Mathematical, Information, and Computational Sciences
of the U.S. Department of Energy under contract number DE-AC03-76SF00098. Most of this
work was done while P. R. Amestoy was visiting NERSC. The work of I. S. Duff was supported
in part by the EPSRC Grant GR/M78502. The research of X. S. Li was supported in part by
the National Science Foundation Cooperative Agreement No. ACI-9619020 and NSF Grant No.
ACI-9813362.

Authors’ addresses: P. R. Amestoy, ENSEEIHT-IRIT, 2 Rue Camichel, 31071 Toulouse, France;
email: amestoy@enseeiht.fr; I. S. Duff, CERFACS, 42 Ave G Coriolis, F-31527, Toulouse Cedex 1,
France; email: I.Duff@rl.ac.uk; J-Y. UExcellent, LIP, ENS-Lyon, 46 Allée d’Italie, 69364 Lyon Cedex
07, France; email: jylexcel@ens-lyon.fr; X. S. Li, NERSC, Lawrence Berkeley National Lab, MS 50F,
1 Cyclotron Rd., Berkeley, CA 94720; email: xiaoye@nersc.gov.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this worked owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

© 2001 ACM 0098-3500/01/1200-0388 $5.00

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001, Pages 388—421.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 389

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
Sparse, structured, and very large systems (direct and iterative methods); G.4 [Mathematics of
Computing]: Mathematical Software—Parallel and vector implementations

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Sparse direct solvers, parallelism, distributed-memory com-
puters, multifrontal and supernodal factorizations

1. INTRODUCTION

The direct solution of sparse linear systems using Gaussian elimination has a
clear advantage over iterative methods in terms of numerical robustness and it
remains the method-of-choice for many ill-conditioned systems. However, it is
very challenging to implement such methods efficiently even on a single proces-
sor yet alone on multiprocessor machines. One of the main reasons is because of
fill-in in the matrix factorization. Moreover, numerical pivoting involves dynam-
ically tracking the fill-ins that are generated in a somewhat unpredictable way.
Handling highly irregular data access and computation is further compounded
by sophisticated computer architectures with several layers of memory hier-
archy. Therefore, unlike many iterative algorithms that users can implement
reasonably well and quickly by themselves, direct solvers require much more
expertise and a longer time to develop. Indeed, users usually do not have the
resources to develop such codes by themselves, but rather resort to off-the-shelf
software. Despite the existence of a number of direct solvers (see Section 7), non-
expert users still find it difficult to choose the right code and find it even harder
to anticipate the performance they will obtain, in terms of execution time, mem-
ory demand, and communication network demand. Therefore, a careful com-
parison of various direct solution codes gives useful and needed guidance to the
user community. It is also valuable to the experts in the field because they get
more insight into the various algorithms.

In this work, we restrict our attention to comparing codes for distributed
memory computers where communication is by message passing, normally
using MPI. In particular, we study in detail, two state-of-the-art solvers,
MUMPS [Amestoy et al. 2000; Amestoy et al. 2001] and SuperLU [Li and Demmel
1999]. The reasons for choosing these are two-fold. First, the two codes use dif-
ferent algorithms that are representative of a far wider range of codes. MUMPS
uses a multifrontal approach with dynamic pivoting for stability while SuperLU
is based on a right-looking supernodal technique with static pivoting. Second,
the two are among the best codes publicly available, and are widely used. There-
fore, our conclusions in this paper, to a large extent, apply to a wider range of
codes. We had originally planned a comparison with more of the sparse codes
from Table XVII. However, our experience shows that such a comparison can
be fraught with difficulties even when the authors of the codes are involved in
the study. So we have shelved this more ambitious project for the moment.

There are many technical difficulties in achieving a truly fair comparison.
The main reason is that there are usually many parameters in the codes that
can be set by the user. Altering their values can result in a dramatic change in

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

390 . P. R. Amestoy et al.

performance. For example, some codes can use any sparsity ordering provided
by the user, which is the case for both MUMPS and SuperLU; other codes can only
use their own ordering algorithms which are sometimes buried deeply within
the code. This will cause different amounts of fill-in; which difference is not
intrinsic to the factorization algorithms. When we compared MUMPS and SuperLU,
we spent a long time trying to understand the parameter space of the two codes,
and made sure that the parameters were set properly so that the two codes
performed the same preprocessing steps and sparsity ordering. We feel that
the lessons we have learned in this present exercise are both invaluable to us
in our future wider study and have given us some insight into the behaviour of
sparse direct codes which is useful to share with a wider audience at this stage.
In addition to valuable information on the comparative merits of multifrontal
versus supernodal approaches, we examine the parameter space for such a
comparison exercise and identify several key parameters that influence the
two approaches to a differing degree.

The rest of the paper is organized as follows. Section 2 gives the character-
istics of the test matrices and the parallel machines. In Section 3 we discuss
the detailed algorithms used in the two codes. Two very important factors af-
fecting the performance of both codes are the use of preprocessing to preorder
the matrix so that the diagonal entries are large relative to the off-diagonals,
and the strategy used to compute an ordering for the rows and columns of the
matrix to preserve sparsity. We discuss these aspects in detail in Section 4.
We compare the performance of the two codes in Section 5. Our performance
metrics include execution time, memory usage, communication characteristics,
scalability, numerical accuracy, as well as the preprocessing costs. In Section 6,
problems with regular grids are used to further illustrate and analyse the rela-
tive performance of the two approaches. In Section 7, we summarize our general
conclusions on the strength and weakness of each solver and list other potential
solvers to evaluate in future work.

2. TEST ENVIRONMENT

Throughout this paper, we will use a set of test problems to evaluate the
performance of our algorithms. Our test matrices come from the forthcom-
ing Rutherford-Boeing Sparse Matrix Collection [Duff et al. 19971, the indus-
trial partners of the PARASOL Project?, Tim Davis’ collection?, SPARSEKIT2*
and the EECS Department of UC Berkeley®. The PARASOL test matrices are
available from Parallab, Bergen, Norway®. Two smaller matrices (caron2 and
LNsp3937) are included in our set of matrices but will be used only in Section 4.1
to illustrate differences in the numerical behaviour of the two solvers.

1Web page http://www.cse.clrc.ac.uk/Activity/SparseMatrices/
2EU ESPRIT IV LTR Project 20160

3Web page http://www.cise.ufl.edu/research/sparse/matrices
4Web page http://math.nist.gov/MatrixMarket/data/SPARSKIT/
5Matrix ECL32 is included in the Rutherford-Boeing Collection
6Web page http://www.parallab.uib.no/parasol/

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 391

Table I. Test Matrices

Real Unsymmetric Assembled (RUA)

Matrix name Order | No. of entries | StrSym® Origin

BBMAT 38744 1771722 0.54 Rutherford-Boeing (CFD)

ECL32 51993 380415 0.93 EECS Department of UC Berkeley
FIDAPM11 22294 623554 1.00 SPARSKIT2 (CFD)

GARON2 13535 390607 1.00 Davis collection (CFD)

INVEXTR1 30412 1793881 0.97 PARASOL (Polyflow S.A.)

LHR71C 70304 1528092 0.00 Davis collection (Chem Eng)
LNSP3937 3937 25407 0.87 Rutherford-Boeing (CFD)

MIXTANK 29957 1995041 1.00 PARASOL (Polyflow S.A.)

RMA10 46835 2374001 1.00 Davis collection (CFD)

TWOTONE 120750 1224224 0.28 Rutherford-Boeing (circuit sim)
WANG4 26068 177196 1.00 Rutherford-Boeing (semiconductor)

) StrSym is the number of nonzeros matched by nonzeros in symmetric locations divided by the total number of
entries (so that a structurally symmetric matrix has value 1.0).

Table II. Characteristics of the CRAY T3E-900 and the IBM SP2. The
Factorization of Matrix WANG4 using MUMPS was used to Estimate the
Effective Uniprocessor Performance of the Computers

Computer CRAY T3E-900 IBM SP2
Frequency of the processor 450 MHertz 66 MHertz
Peak uniproc. performance 900 Mflops 264 Mflops
Effective uniproc. performance 340 Mflops 150 Mflops
Peak communication bandwidth 300 Mbytes/sec | 36 Mbytes/sec
Latency 4 usec 40 pusec
Bandwidth/Effective performance | 0.88 0.24

Note that, for most of our experiments, we do not consider symmetric matri-
ces in our test set because SuperLU cannot exploit the symmetry and is unable to
produce an LDL” factorization. However, since our test examples in Section 6
are symmetric, we do show a few results with both the symmetric and unsym-
metric factorization versions of MUMPS. Matrices mixrank and wvexrrl have been
modified because of underflow values in the matrix files. To keep the same spar-
sity pattern, we have replaced all entries with exponents smaller than —300 by
numbers with the same mantissa but with exponents of —300. For each linear
system, the right-hand side vector is generated so that the true solution is a
vector of all ones.

All results presented in this paper have been obtained on the Cray T3E-
900 (512 DEC EV-5 processors, 256 Mbytes of memory per processor, 900
peak Megaflop rate per processor) from NERSC at Lawrence Berkeley Na-
tional Laboratory. We will also refer to experiments on a 35 processor IBM SP2
(66.5 MHertz processor with 128 Mbytes of physical memory and 512 Mbytes
of virtual memory and 266 peak Megaflop rate per processor) at GMD in Bonn,
Germany, used during the PARASOL Project. The performance characteristics
of the two machines are listed in Table II.

Although in this paper we only provide a complete set of results on the T3E,
it is important to look at machines with different characteristics because we
have built parameters/options into the codes to balance the computation and

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

392 . P. R. Amestoy et al.

communication for different architectures. We used the SP2 to help understand
tuning parameters (see Sections 3.1 and 3.2).

3. DESCRIPTION OF THE ALGORITHMS USED

In this section, we briefly describe the main characteristics of the algorithms
used in the solvers and highlight the major differences between them. For a
complete description of the algorithms, the reader should consult Amestoy et al.
[2000]; Amestoy et al. [2001]; Li and Demmel [1998, 1999].

Both algorithms can be described by a directed acyclic graph [Gilbert and Liu
1993] whose nodes represent computations and whose edges represent transfer
of data. This graph reduces to a tree in the case of the multifrontal method,
MuMPS. In this case, some steps of Gaussian elimination are performed on a
dense frontal matrix at each node and the Schur complement (or contribution
block) that remains is passed for assembly at the parent node. In the case of the
supernodal code, SuperLU, the distributed memory version uses a right-looking
formulation which, having computed the factorization of a block of columns,
then immediately sends the data to update the block columns in the trailing
submatrix.

We would like to emphasize that our parallel codes are not both derived
from their sequential and/or shared memory counterparts. On unsymmetric
matrices, MUMPS is very similar to MA41 [Amestoy and Duff 1993] so that both
the numerical behaviour and the uniprocessor performance of the two codes
are very comparable. Parallel SuperLU is completely different from sequential
SuperLU—the parallel code is right-looking and uses static pivoting, whereas the
sequential one is left-looking and uses partial pivoting. These changes were
made to enhance parallelism and scalability.

Both codes can accept any pivotal ordering and both have a built-in capabil-
ity to generate an ordering based on an analysis of the pattern of A+ AT, where
the summation is performed symbolically. However, for the present version of
MUMPS, the symbolic factorization is markedly less efficient if an input ordering
is given, since different logic is used in this case. The default ordering used by
MUMPS is approximate minimum degree (AMD) [Amestoy et al. 1996] while the
default for SuperLU is multiple minimum degree (MMD) [Liu 1985]. However, in
our experiments using a minimum degree ordering, we consider only the AMD
ordering since both codes can generate this using the subroutine MC47 from HSL
[HSL 2000]. It is usually far quicker than MMD and produces a symbolic factor-
ization close to that produced by MMD. We also use the nested dissection (ND)
ordering from MeTis [Karypis and Kumar 1998]. In addition, it is sometimes very
beneficial to precede the ordering by performing an unsymmetric permutation
to place large entries on the diagonal, and then scaling the matrix so that the
diagonals are all of modulus one and the off-diagonals have modulus less than
or equal to one. We use the MC64 code of HSL to perform this preordering and
scaling [Duff and Koster 2001] and indicate clearly when this is done. The ef-
fect of using this preordering of the matrix is discussed in detail in Section 4.1.
Finally, when MC64 is not used, our matrices are always row and column scaled
(each row/column is divided by the maximum value in the row/column).

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 393

In both approaches, a pivot order is defined by the analysis and symbolic
factorization stages. In MUMPS, the modulus of the prospective pivot is compared
with the largest modulus of an entry in the row and is only accepted if this
is greater than a threshold value, typically between 0.001 and 0.1 (our default
value is 0.01). Note that, although MUMPS can choose pivots from off the diagonal,
the largest entry in the column might be unavailable for pivoting at this stage
if all entries in its row are not fully summed. This threshold pivoting strategy
is common in sparse Gaussian elimination and helps to avoid excessive growth
in the size of entries during the matrix factorization and so directly reduces a
bound on the backward error. If a prospective pivot fails the test, all that hap-
pensis that it is kept in the Schur complement and is passed to the parent node.
Eventually all rows with entries in the column will be available for pivoting,
at the root if not before, so that a pivot can be chosen from the column. Thus
the numerical factorization can respect the threshold criterion but at the cost
of increasing the size of the frontal matrices and causing more work and fill-in
than were forecast. For the SuperLU approach, a static pivoting strategy is used
and we keep to the pivotal sequence chosen in the analysis. The magnitude
of the potential pivot is tested against a threshold of €/2|A|;, where ¢ is the
machine precision and | A|; is the one-norm of A. If it is less than this value, it
is immediately set to this value (with the same sign) and the modified entry is
used as pivot. This corresponds to a half-precision perturbation to the original
matrix entry. The result is that the factorization is not exact and iterative re-
finement may be needed. Note that, after iterative refinement, we obtained an
accurate solution in all the cases that we tested. If problems were still to occur,
then extended precision BLAS [Li et al. 2000] could be used.

3.1 MUMPS Main Parallel Features

The parallelism within MUMPS is at two levels. The first uses the structure of
the assembly tree, exploiting the fact that computations at nodes that are not
ancestors or descendants, are independent. The initial parallelism from this
source (tree parallelism)is the number ofleaf nodes but this reduces to one at the
root. The second level is in the subdivision of the elimination operations through
blocking of the frontal matrix. This blocking gives rise to node parallelism and
is either by rows (referred to as 1D-node parallelism) or by rows and columns
(at the root and referred to as 2D-node parallelism). Node parallelism depends
on the size of the frontal matrix which, because of delayed pivots, is only known
at factorization time. Therefore this is determined dynamically. Each tree node
is assigned a processor a priori, but the subassignment of blocks of the frontal
matrix is done dynamically.

Most of the machine dependent parameters in MUMPS that control the effi-
ciency of the code are designed to take into account both the uniprocessor and
multiprocessor characteristics of the computers. Because of the dynamic dis-
tributed scheduling approach, we do not need as precise a description of the
performance characteristics of the computer as for codes such as Pastix [Henon
et al. 1999], that are based on static scheduling. Most of the machine depen-
dent parameters in MUMPS are associated with the block sizes involved in the

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

394 . P. R. Amestoy et al.

parallel blocked factorization of the dense frontal matrices. Our main objective
is to maintain a minimum granularity to efficiently exploit the potential of the
processor, while providing sufficient tasks to exploit the available parallelism.
Our target machines differ in several respects. The most important ones are
illustrated in Table II. We found that smaller granularity tasks could be used
on the CRAY T3E than on the IBM SP2 because of the relatively faster rate of
communication to Megaflop rate on the CRAY T3E than on the IBM SP2. That
is to say that the communication is relatively more efficient on the CRAY T3E.

Dynamic scheduling is a major and original feature of the approach used
in MUMPS. A critical part of this algorithm is when a process associated with a
tree node decides to reassign some of its work, corresponding to a partitioning
of the rows, to a set of so-called worker processes. We call such a node a one-
dimensional parallel node. In earlier versions of MuMPS, a fixed block size is used
to partition the rows and work is distributed to processes starting with the
least loaded process. (The load of a process is determined by the amount of
work [number of operations] allocated to it and not yet processed, which can
be determined very cheaply.) Since the block size is fixed, it is possible for a
process in charge of a one-dimensional parallel node to give additional work
to processes that are already more loaded than itself. This can happen near
the leaf nodes of the tree where sparsity provides enough parallelism to keep
all processes busy. On the other hand, insufficient tasks might be created to
provide work to all idle processes. This situation is more likely to occur close to
the root of the tree.

In the new algorithm (available since Version 4.1 of MuMPS), the block size for
the one-dimensional partitioning can be dynamically adjusted by the process in
charge of the node. Early in the processing of the tree (that is, near the leaves)
this gives a relatively bigger block size, thereby reducing the number of worker
processes; whereas close to the root of the tree the block size will be automat-
ically reduced to compensate for the lack of parallelism in the assembly tree.
We bound the block size for partitioning a one-dimensional parallel node, by an
interval. The lower bound is needed to maintain a minimum task granularity,
and to control the volume of messages. The upper bound of the interval is less
critical (it is by default chosen to be about eight times the lower bound) but it
is used in estimating the maximum size of the communication buffers and of
the factors, and so should not be too large.

This “all dynamic” strategy of both partitioning and distributing work onto
the processors could cause some trouble on a large number of processors (more
than 128). In that case, it can be quite beneficial to take into account some
“global” information to help the local decisions. For example, one could restrict
the choice of worker processes to a set of candidate processors determined stat-
ically during the analysis phase. This notion, commonly used in the design
of static scheduling algorithms such as Henon et al. [1999], could reduce the
overhead of the dynamic scheduling algorithm, reduce the increase in the com-
munication volume when increasing the number of processors, and improve the
local decision. The tuning of the parameters controlling the block size for 1D
partitioning would then be easier and the estimation of the memory required
during factorization would be more accurate. This could be expected to improve

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 395

Global Matrix Process Mesh

1210120 0.1 2
AR NEERE L EH 30405
0 1] mil‘ 210
3 5 4.5 13
ﬁﬁiiffi}tﬁzﬁﬁ ,,,, o2 o

4775 13 4
O] 2 0 12

Fig. 1. The 2D block-cyclic layout used in SuperLU.

the performance, particularly on a large number of processors. This feature is
not available in the current Version 4.1 of MuMPS but will be implemented in
a future release and will address some of the current limitations of the MuMPS
approach (see Section 5.2).

The solution phase is also performed in parallel and uses asynchronous com-
munications both for the forward elimination and the back substitution. In the
case of the forward elimination, the tree is processed from the leaves to the
root, in a way similar to the factorization, while the back substitution requires
a different algorithm that processes the tree from the root to the leaves. A pool
of ready-to-be-activated tasks is used. We do not change the distribution of the
factors as generated in the factorization phase. Hence, 1D-node and 2D-node
parallelism are also used in the solution phase.

3.2 SuperLU Main Parallel Features

SuperLU also uses two levels of parallelism although more advantage is taken of
the node parallelism through blocking of the supernodes. Because the pivotal
order is fully determined at the analysis phase, the assignment of blocks to
processors can be done statically, a priori, before the factorization commences.
A 2D block-cyclic layout is used and the execution can be pipelined, since the
sequence is predetermined. The matrix partitioning is based on the notion of
an unsymmetric supernode introduced in Demmel et al. [1999]. The supernode
is defined over the matrix factor L. A supernode is a range (r : s) of columns of
L with the triangular block just below the diagonal, being full, and the same
nonzero structure elsewhere (this is either full or zero). This supernode parti-
tion is used as the block partition in both row and column dimensions, that is,
the diagonal blocks are square. If there are N supernodes in an n-by-n matrix,
there will be N2 blocks of non-uniform size. Figure 1 illustrates such a block
partition. The off-diagonal blocks may be rectangular and need not be full.
Furthermore, the columns in a block of U do not necessarily have the same row
structure. We call a dense subvector in a block of U, a segment. The P processes
are also arranged as a 2D mesh of dimension P, x P, = P. By block-cyclic layout,
we mean that block (I, J) (of L or U) is mapped onto the process at coordinate
(I —1)mod P,, (J — 1) mod P.) of the process mesh. During the factorization,

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

396 . P. R. Amestoy et al.

HE

A D) L(L, K) U(K, J)

@ UK, = II}
() UK, J) = II ﬂ H T

Fig. 2. Illustration of the numerical kernels used in SuperLU.

block L(I, JJ) is only needed by the processes on the process row ((I — 1) mod
P,). Similarly, block U(I, J) is only needed by the processes on the process
column ((J — 1) mod P.). This partitioning and mapping can be controlled by
the user. First, the user can set the maximum block size parameter. The symbolic
factorization algorithm identifies supernodes, and chops the large supernodes
into smaller ones if their sizes exceed this parameter. The supernodes may be
smaller than this parameter due to sparsity, and the blocks are then defined by
the supernode boundaries. (That is, supernodes can be smaller than the maxi-
mum block size but never larger.) Our experience has shown that a good value
for this parameter on the IBM SP2 is around 40, while on the Cray T3E, it is
around 24. Second, the user can set the shape of the process grid, such as 2 x 3
or 3 x 2. Better performance is obtained when we keep the process row dimen-
sion slightly smaller than the process column dimension. This rule of thumb
was used on the Cray T3E to define the grid shapes.

In this 2D mapping, each block column of L resides on more than one process,
namely, a column of processes. For example in Figure 1, the second block column
of L resides on the column of processes {1, 4}. Process 1 only owns two nonzero
blocks, which are not contiguous in the global matrix.

The main numerical kernel involved during numerical factorization is a
block update corresponding to the rank-£ update to the Schur complement
(see Figure 2):

Al,J) <« Al,J)—LUI,K)x UK, J),

In the earlier versions of SuperLU, this computation was based on Level 2.5
BLAS. That is, we call the Level 2 BLAS routine GEMYV (matrix-vector product)
but with multiple vectors (segments), and the matrix L(I, K) is kept in cache
across these multiple calls. This, to some extent, mimics the Level 3 BLAS
GEMM (matrix-matrix product) performance. However, the difference between
Level 2.5 and Level 3 is still quite large on many machines, for example the IBM
SP2. This motivated us to modify the kernel in the following way, in order to use
Level 3 BLAS. For best performance, we distinguish two cases corresponding
to the two shapes of a U(K, J) block.

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 397

—The segments in U(K, J) are of same height, as shown in Figure 2 (a).
Since the nonzero segments are stored contiguously in memory, we can call
GEMM directly, without performing operations on any zeros.

—The segments in U(K, J) are of different heights, as shown in Figure 2 (b).
In this case, we first copy the segments into a temporary working array
T, with some leading zeros padded if necessary. We then call GEMM using
L(I,K) and T (instead of U(K, J)). We perform some extra floating-point
operations for those padding zeros. The copying itself does not incur a run
time cost, because the data must be loaded in the cache anyway. The working
storage T is bounded by the maximum block size, which is a tunable param-
eter. For example, we usually use 40 x 40 on the IBM SP2 and 24 x 24 on the
Cray T3E.

Depending on the matrix, this Level 3 BLAS kernel improved the unipro-
cessor factorization time by about 20% to 40% on the IBM SP2. A performance
gain was also observed on the Cray T3E. It is clear that the extra operations
are well offset by the benefit of the more efficient Level 3 BLAS routines.

The current factorization algorithm has two limitations to parallelism. Here
we explain, by examples, what the problems are, and speculate as to how the
algorithm may be improved in the future. In the following matrix notation, the
zero blocks are left blank. For each nonzero block we mark in the process
which owns the block.

—Parallelism from the sparsity.
Consider a matrix with 4-by-4 blocks mapped onto a 2-by-2 process mesh.

o] [1]]o][1]
o] |

Although matrix column 2 depends on column 1, not all processes in column 2
depend on column 1. Only process 1 depends on the L block on process 0.
Process 3 could start factorizing column 2 at the same time as process 0 is
factorizing column 1, before process 1 starts factorizing column 2. But the
current algorithm requires all the column processes to factorize the column
synchronously, thereby introducing idle time for process 3. We can relax this
constraint by allowing the diagonal process (3 in this case) to factorize the
diagonal block and then send the factorized block down to the off-diagonal
processes (using mpi_isend), even before the off-diagonal processes are ready
for this column. This would eliminate some artificial interprocess dependen-
cies and potentially reduce the length of the critical path.

Note that this kind of independence comes from not only the sparsity,
but also the 2D process-to-matrix mapping. An even more interesting study
would be to formalize these 2D task dependencies into a task graph, and
perform some optimal scheduling on it.

—Parallelism from the directed acyclic elimination graphs [Gilbert and Liu
1993] (often referred to as elimination dags or edags).

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

398 . P. R. Amestoy et al.

Consider another matrix with 6-by-6 blocks mapped onto a 2-by-3 process

mesh.
loll1] [o]
2] [o]
[0]
(3] [5].

Columns 1 and 3 are independent in the elimination dags. The column
process sets {0, 3} and {2, 5} could start factorizing columns 1 and 3 simul-
taneously. However, since process 2 is also involved in the update task of
block (5, 6) associated with Step 1 and our algorithm gives precedence to
all the tasks in Step 1 over any task in Step 3, process 2 does not factor-
ize column 3 immediately. We may change this task precedence by giving
the factorization task of a later step higher priority than the update tasks
of the previous steps, because the former is more likely to be on the criti-
cal path. This would better exploit the task independence coming from the
elimination dags.

We expect the above improvements will have a large impact for very sparse
and/or very unsymmetric matrices, and for the orderings that give wide and
bushy elimination dags, such as nested dissection.

The triangular solution algorithm is also designed around the same dis-
tributed 2D data structure. The forward substitution proceeds from the bot-
tom of the elimination dag to the root, whereas the back substitution proceeds
from the root to the bottom. The algorithm is based on a sequential variant
called “inner product” formulation. The execution of the program is completely
message-driven. Each process is in a self-scheduling loop, performing appro-
priate local computation depending on the type of the message received. The
entirely asynchronous approach enables a large overlap between communica-
tion and computation and helps to overcome the much higher communication
to computation ratio, in this phase.

3.3 Comments on the Algorithmic Differences

Both approaches use Level 3 BLAS to perform the elimination operations. How-
ever, in MUMPS, the frontal matrices are always square. It is possible that there are
zeros in the frontal matrix, especially if there are delayed pivots, or the matrix
structure is markedly asymmetric, but the present implementation takes no
advantage of this sparsity, and all the counts measured assume the frontal ma-
trix is dense. It is shown in Amestoy and Puglisi [2000] that one can detect and
exploit the structural asymmetry of the frontal matrices. With this new algo-
rithm, significant gains can be obtained both in memory and in time to perform
the factorization. For example, using MuMPS with the new algorithm, the number
of operations to factorize matrices Lur71c and tworone would be reduced by 30%
and 37%, respectively. The approach, tested on the shared memory multifrontal

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers

399

\
cess 0 '4 485 \u]\\ it §

m z
IIW’M.k | '0.{
J’” J. "»4,’«',\ i
', M \ "iu.‘w‘

\4|

9
z———1
IE——
_— s |
- =

I /“"~,

/’ *h,\ l

V[/’ ,5

&9'5‘
!

S

'\,f

fn

]
H
/

515

I

i

; ."//
{,\'lfl
i \ //

V/I/“
1,1‘.

9,(>§s
'

|
sisssss

I 108

455’.

"~‘/

‘\H\

)izt

Application

Fig. 3.

Illustration of the asynchronous behaviour of the MUMPS factorization phase.

code MA41 [Amestoy and Duff 1993] from HSL [2000], is however not yet avail-
able in the current version of MUMPS. In SuperLU, advantage is taken of sparsity
in the blocks, and usually the dense matrix blocks are smaller than those used
in MUMPS. In addition, SuperLU uses a more sophisticated data structure to keep
track of the irregularity in sparsity. Thus, the uniprocessor Megaflop rate of
SuperLU is much worse than that of MuMPs. This performance penalty is to some
extent alleviated by the reduction in floating-point operations because of the
better exploitation of sparsity. As a rule of thumb, MuvMps will tend to perform
particularly well when the matrix structure is close to symmetric, while SuperLU
can better exploit asymmetry. We note that, even if the same ordering is input to
the two codes, the computational graph generated in each case will be different.
In the case of MUMPS, the assembly tree generated by MC47 is used to drive the
MuMPS factorization phase, while, for SuperLu, the directed acyclic graphs (dags)
are built implicitly.

In Figures 3 and 4, we use a vampir trace [Nagel et al. 1996] to illustrate
the typical parallel behaviour of both approaches. These traces correspond to
a zoom in the middle of the factorization phase of matrix semar on 8 processors
of the CRAY T3E. Black areas correspond to time spent in communications
and related MpI calls. Each line between two processes corresponds to one
message transfer. From the plots, we can see that SuperLU has distinct phases
for local computation and interprocess communication, whereas for MUMPS, it
is hard to distinguish when the process performs computation and when it

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

400 . P. R. Amestoy et al.

9.2?8 ‘),?Irs 9. "42»
I |

LIl
VT_API
MComm

Process ()

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7

Fig. 4. Illustration of the relatively more synchronous behaviour of the SuperLU factorization
phase.

transfers a message. This is due to the asynchronous scheduling algorithm
used in MUMPS, which may have a better chance of overlapping communication
with computation.

4. IMPACT OF PREPROCESSING AND NUMERICAL ISSUES

In this section, we first study the impact on both solvers of the preprocessing of
the matrix. In this preprocessing, we first use row or column permutations to
permute large entries onto the diagonal. In Section 4.1, we report and compare
both the structural and the numerical impact of this preprocessing phase on the
performance and accuracy of our solvers. After this phase, a symmetric ordering
(minimum degree or nested dissection) is used, and we study the relative in-
fluence of these orderings on the performance of the solvers in Section 4.2. We
also comment on the relative cost of the analysis phase of the two solvers.

4.1 Use of a Preordering to Place Large Entries onto the Diagonal
and the Cost of the Analysis Phase

Duff and Koster developed several algorithms for permuting a sparse matrix
so that the diagonal entries are large relative to the off-diagonal entries [Duff
and Koster 2001]. They have also written a computer code, MC64 (available from
HSL [2000]), to implement this algorithm. Here, we use option 5 of MC64 which
maximizes the product of the modulus of the diagonal entries and then scales
the permuted matrix so that it has diagonal entries of modulus one and all
off-diagonals of modulus less than or equal to one.

The importance of this preordering and scaling is clear. For MuMps, it should
limit the amount of numerical pivoting (which increases the overall cost)

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 401

during the factorization. For SuperLU, we expect such a permutation to be even
more crucial, reducing the number of small pivots that are modified and set to
g2 |Al1. Li and Demmel [1998] gave a detailed analysis about the effect of this
preordering on the backward error and accuracy using static pivoting, based on
experiments with more than 60 unsymmetric matrices from real applications.
Duff and Koster [1999] studied the benefits of using this preordering in
iterative solvers and preconditioning. Benzi, Haws and Ttama [2000] conducted
more extensive experiments on the effect of MC64 on preconditioning strategies.

The MC64 code of Duff and Koster [2001] is usually quite efficient and so
should normally require little time relative to the matrix factorization, even
if the latter is executed on many processors while MC64 runs on only one pro-
cessor. Results in this section will show that although this is often true, there
are cases when MC64 can be quite expensive so that it is of benefit to develop
a strategy to use this preordering only when it will benefit the subsequent nu-
merical factorization. Moreover, matrices which are unsymmetric but have a
symmetric or nearly symmetric structure, are a very common problem class.
The problem with these is that MC64 performs an unsymmetric permutation
and will tend to destroy the symmetry of the pattern. Since both codes use a
symmetrized pattern for the sparsity ordering (see Section 4.2) and MUMPS also
uses one for the symbolic and numerical factorization, the overheads in having a
markedly asymmetric pattern, can be high. Conversely, when the initial matrix
is very asymmetric (as for example LurR71c), an unsymmetric permutation may
actually help to increase structural symmetry, thus giving a second benefit to
the subsequent matrix factorization.

We show the effects of using MC64 on some examples in Table III. In Table VII,
we illustrate the relative cost of the main steps of the analysis phase when MC64
is used to preprocess the matrix.

We see in Table III that, for very unsymmetric matrices (Lur71c and TWOTONE),
MC64 is really needed by MUMPS and SuperLU to factorize these matrices efficiently.
Both matrices have zeros on the diagonal. Because of the static pivoting ap-
proach used by SuperLU, unless these zeros are made nonzero by fill-in and are
then large enough, they will be perturbed during factorization and a factoriza-
tion of a nearby matrix will be obtained. In the case of MuMPS, the dramatically
higher fill-in obtained without MC64 makes it also necessary to use MC64. For
MUMPS, the benefit from using MC64 is both structural (compare columns 3 and
5 of Table IV) and numerical (compare the differences between columns 2 and
3 with the differences between columns 4 and 5 of Table IV). The permuted
matrix often has a larger structural symmetry (see column 4 of Table III) so
that a symmetric permutation can be obtained on the permuted matrix, that is
more efficient in preserving sparsity. SuperLU benefits in a similar way from sym-
metrization because the computation of the symmetric permutation is based on
the same assumption, even if SuperLU preserves the asymmetric structure of the
factors better, by performing a symbolic analysis on a directed acyclic graph and
exploiting asymmetry in the factorization phase (compare, for example, results
with MUMPS and SuperLU on matrices LHR71c, MIXTANK and TWOTONE).

The use of MC64 can also improve the quality of the factors and the numerical
behaviour of the factorization phase, and can reduce the number of steps of

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

402 . P. R. Amestoy et al.

Table III. Impact of Permuting Large Entries onto the Diagonal (Using MC64) on the Size of
the Factors and the Number of Operations. StrSym Denotes the Structural Symmetry after
the Ordering

Nonzeros
in factors Flops
Matrix Solver Ordering StrSym (x108) (x107)
BBMAT MUMPS AMD 0.54 46.1 41.5
— MC64+AMD 0.50 44.3 36.9
SuperLU AMD 0.54 41.2 34.0
— MC64+AMD 0.50 40.2 31.2
ECL32 MUMPS AMD 0.93 42.9 64.6
— MC64+AMD 0.93 42.9 64.6
SuperLU AMD 0.93 42.4 68.3
— MC64+AMD 0.93 42.7 68.4
FIDAPM11 MUMPS AMD 1.00 16.1 9.7
— MC64+AMD 0.46 28.5 294
SuperLU AMD 1.00 14.0 8.9
— MC64+AMD 0.46 24.8 22.0
GARONZ2 MUMPS AMD 1.00 2.4 0.3
— MC64+AMD 0.83 2.7 0.4
SuperLU AMD 1.00 2.1 0.3
— MC64+AMD 0.83 2.5 0.4
INVEXTR1 MUMPS AMD 0.97 31.2 35.8
— MC64+AMD 0.86 33.6 38.6
SuperLU AMD 0.97 24.8 22.6
— MC64+AMD 0.86 28.4 28.0
LHR71C MUMPS AMD™) 0.00 285.8 1431.0
— MC64+AMD 0.21 11.8 14
SuperLU AMD®™ 0.00 222.5 1
— MC64+AMD 0.21 7.6 0.5
LNSP3937 MUMPS AMD 0.87 0.3 0.02
— MC64+AMD 0.55 0.4 0.03
SuperLU AMD 0.87 0.2 0.02
— MC64+AMD 0.55 0.3 0.03
MIXTANK MUMPS AMD 1.00 39.1 64.4
— MC64+AMD 0.91 45.7 81.5
SuperLU AMD 1.00 38.4 64.1
— MC64+AMD 0.91 41.2 64.6
RMA10 MUMPS AMD 1.00 8.9 14
— MC64+AMD 0.90 9.7 1.6
SuperLU AMD 1.00 8.9 15
— MC64+AMD 0.90 9.3 1.5
TWOTONE MUMPS AMD 0.28 235.0 1221.1
— MC64+AMD 0.43 22.1 29.3
SuperLU AMD 0.28 65.3 159.0
— MC64+AMD 0.43 11.9 8.0
WANG4 MUMPS AMD 1.00 11.6 10.5
— MC64+AMD 1.00 11.6 10.5
SuperLU AMD 1.00 10.7 9.1
— MC64+AMD 1.00 10.7 9.1

) Estimation given by the analysis (not enough memory to perform factorization).
1The flop counts for SuperLU are calculated during factorization.

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 403

Table IV. Structural and Numerical Benefits of Preprocessing Based on MC64.
Number of Operations (in Millions) during the Factorization Phase of MUMPS.
Diag. Domin. Matrix: the Matrix to be Factorized is Made Diagonally Dominant
(Done after MC64 Based Permutation when MC64 is Used)

NO MC64 MC64

Original Diag. Domin. Original Diag. Domin.

matrix matrix matrix matrix
BBMAT 41.5 41.2 36.9 36.9
FIDAPM11 9.7 8.6 29.4 29.4
INVEXTR1 36.8 34.3 38.6 38.5
LHR71C (%) 715.6 14 1.3
TWOTONE 1221.1 240.4 29.3 29.3

*)Not enough memory to run the factorization phase.

Table V. Illustration of the Convergence of Iterative Refinement

SuperLU MUMPS
Matrix Tter. No MC64 MC64 No MC64 MC64
BBMAT Err=2.1e-03 Err=5.6e—01 Err=1.3e—06 Err=6.5e—08
0 Berr =4.0e—09 1.3e—05 Berr="7.4e—11 1.2e—11
1 Berr="7.7e—16 4.6e—11 Berr=3.2e—16 3.2e—16
2 Berr=5.2e—16 9.7e—15 Berr=3.2e—16 2.7e—16
3 Berr= 4.7e—16
4 Berr = 5.0e—16
Err= 2.5e—09 Err=2.4e—09 Err= 3.0e—09 Err=3.5e—09
LNsP3937 Err=1.6e—-01 Err=2.7e-11 Err=9.2e—07 Err=3.6e—11
0 Berr=1.6e—07 3.5e—12 Berr=4.3e—08 1.5e—12
1 Berr=1.5e—08 2.2e—16 Berr=4.7¢e—16 2.4e—16
2 Berr=5.7¢—-10 2.5e—16 Berr=2.1e—16 2.0e—16
3 Berr=1.6e—11
4 Berr=4.2e—13
5 Berr=1.1e-14
6 Berr=3.2e—16
7 Berr=3.2e—16
Err=1.0e—-11 Err=2.2e-11 Err=6.3e—12 Err=6.4e—12
GARONZ2 Err=9.2e—07 Err=3.7e—12 Err=1.7e-11 Err=3.4e—12
0 Berr=2.5e—10 2.4e—15 Berr=1.6e—15 2.1e—15
1 Berr=3.4e—16 3.8e—16 Berr=2.2e—16 2.3e—16
2 Berr=3.4e—16 3.4e—16 Berr=2.0e—16 1.8e—16
Err=2.9e—-12 Err=3.3e—12 Err=1.6e—12 Err=1.3e—12

iterative refinement required to reduce the backward error to machine preci-
sion. This is illustrated in Table V where we show the number of steps of itera-
tive refinement required to reduce the componentwise relative backward error,
Berr = max; m [Arioli et al. 1989], to machine precision (s ~ 2.2 x 10716
on the CRAY T3E). Iterative refinement will stop when either the required
accuracy is reached, or the convergence rate is too slow (Berr does not decrease
by at least a factor of two). The true error is reported as Err = % This
table illustrates the impact of the use of MC64 on the quality of the initial solution
obtained with both solvers, prior to iterative refinement. In addition, it shows
that, thanks to numerical threshold pivoting, the initial solution is almost al-
ways more accurate with MUMPS than with SuperLU, and is usually markedly

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

404 . P. R. Amestoy et al.

so. Note that parallel SuperLU uses static pivoting and has quite a different
numerical behaviour from sequential SuperLU, where partial pivoting is used.
These observations are further confirmed on a larger number of test matrices in
Table VI. The same stopping criterion was applied for these runs as for the runs
in Table V. In the case of MUMPS, MC64 can also result in a reduction in the number
of off-diagonal pivots and in the number of delayed pivots. For example on the
matrix wvextrl the number of off-diagonal pivots drops from 1520 to 109 and
the number of delayed pivots drops from 2555 to 42. One can also see in Table V
(for example BeMaT) that MC64 does not always improve the numerical accuracy
of the solution obtained with SuperLU.

As expected, we see that, for matrices with a fairly symmetric pattern (for
example matrix ripapm11 in Table III), the use of Mc64 leads to a significant
decrease in symmetry which, for both solvers, results in a significant increase
in the number of operations during factorization. Also, the time spent in MC64 can
dominate the analysis time of either solver (see Table VII), even for matrices
such as ripapm11 and mvextrl for which it does not provide any gain for the
subsequent steps. Thus, for both solvers, the default should be to not use MCc64 on
fairly symmetric matrices. In practice, the default option of the MuMPS package is
such that Mc64 is automatically invoked when the structural symmetry is found
to be less than 0.5. For SuperLU, zeros on the diagonal and numerical issues must
also be considered, so that an automatic decision during the analysis phase is
more difficult.

We finally compare, in Figure 5, the time spent by the two solvers during
the analysis phase, when reordering is based only on AMD (MC64 is not invoked).
Since the time spent in AMD is very similar in both cases, this gives a good
estimation of the cost difference of the analysis phase of the two solvers. Note
that superLU is not currently tied to any specific ordering code and does not take
advantage of all the information available from an ordering algorithm. A tighter
coupling with an ordering, as is the case with MUuMPS and AMD, should reduce the
analysis time for SuperLU. However, during the analysis phase of SuperLu, all
the asymmetric structures needed for the factorization are computed and the
directed acyclic graph [Gilbert and Liu 1993] of the unsymmetric matrix must
be built and mapped onto the processors. With MuMPs, the main data structure
handled during analysis, is the assembly tree, which is produced directly as
a by-product of the ordering phase. No further data structures are generated
during this phase. Dynamic scheduling will be used during factorization so that
only a simple massage of the tree and a partial mapping of the computational
tasks onto the processors, are performed during analysis.

4.2 Use of Orderings to Preserve Sparsity

On matrices for which Mcé4 is not used we show, in Table VIII, the impact
of the choice of the symmetric permutation on the fill-in and floating-point
operations for the factorization. As was observed in Amestoy et al. [2001], the
use of nested dissection can significantly improve the performance of MuMPS. We
see here that SuperLU will also, although to a lesser extent, benefit from the use
of a nested dissection ordering. We examine the influence of the ordering on

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers

. 405

Table VI. Comparison of the Numerical Behaviour, Backward Error (Berr) and Forward Error
(Err), of the Solvers. Nb Indicates the Number of Steps of Iterative Refinement

WITHOUT MC64
WITHOUT Iter. Ref. WITH Iterative Refinement
Matrix Solver Berr Err Nb Berr Err
BBMAT MUMPS 7.4e—11 1.3e—06 2 3.2e—16 3.0e—09
SuperLU 4.0e—09 2.1e—03 2 5.2e—16 2.5e—09
ECL32 MUMPS 3.6e—13 3.0e—11 2 3.1e—16 1.4e-11
SuperLU 2.4e—14 2.6e—11 2 2.9e—16 7.0e—11
FIDAPM11 MUMPS 3.6e—11 1.7e—09 2 2.8e—16 1.2e—12
SuperLU 1.7e—06 1.9e—04 4 3.1e—16 1.8e—12
GARON2 MUMPS 1.6e—15 1.7e—11 2 2.0e—16 1.6e—12
SuperLU 2.5e—10 9.2e—07 2 3.4e—16 2.9e—12
INVEXTR1 MUMPS 4.4e—08 8.9e—01 2 8.3e—16 2.8e—05
SuperLU 1.7e—07 1.0e—01 3 8.0e—16 1.3e—05
LHR71C MUMPS Not enough memory
SuperLU Not enough memory
LNSP3937 MUMPS 4.3e—08 9.2e—07 3 2.1e—16 6.3e—12
SuperLU 1.6e—07 1.6e—01 7 3.2e—16 1.0e—11
MIXTANK MUMPS 1.9e—12 4.8e—09 2 5.9e—16 l.4e—-11
SuperLU 3.6e—09 4.4e—04 3 4.8e—16 2.8e—11
RMA10 MUMPS 1.2e—-13 8.3e—13 2 5.0e—16 1.2e—12
SuperLU 2.2e—06 3.8e—05 3 4.2e—16 9.2e—13
TWOTONE MUMPS 5.0e—07 1.3e—05 3 1.3e—15 2.1e—11
SuperLU 1.0e+00 6.6e+126 1 1.0e4-00 2.6e+4-220
WITH MC64
WITHOUT Iter. Ref. WITH Iterative Refinement
Matrix Solver Berr Err Nb Berr Err
BBMAT MUMPS 1.2e—11 6.5e—08 2 2.7e—16 3.5e—09
SuperLU 1.3e—05 5.6e—01 4 5.0e—16 2.4e—09
ECL32 MUMPS 5.6e—12 5.6e—10 2 3.0e—16 1.6e—11
SuperLU 2.9e—14 1.3e—11 2 3.5e—16 1.7e—11
FIDAPM11 MUMPS 4.4e—12 2.3e—10 2 3.6e—16 6.8e—13
SuperLU 1.3e—01 7.8e—01 12 3.5e—16 l.1le—12
GARON2 MUMPS 2.1e—15 3.4e—-12 2 1.8e—16 1.3e—12
SuperLU 2.4e—15 3.7e—12 2 3.4e—16 3.3e—12
INVEXTR1 MUMPS 6.7e—16 1.6e—05 2 6.3e—16 5.6e—06
SuperLU 1.0e—05 9.8e—01 3 6.8e—16 1.2e—05
LHR71C MUMPS 1.1e-05 9.9e+-00 3 3.2e—13 1.0e+00
SuperLU 7.1e—04 3.9e4-06 2 8.9e—07 4.2e+07
LNSP3937 MUMPS 1.5e—12 3.6e—11 2 2.0e—16 6.4e—12
SuperLU 3.5e—12 2.7e—11 2 2.5e—16 2.2e—11
MIXTANK MUMPS 4.8e—12 2.3e—08 2 4.2e—16 4.0e—11
SuperLU 8.2e—03 8.7e—01 5 5.1e—16 3.1e—11
RMA10 MUMPS 2.1e—12 3.4e—11 2 5.0e—16 1.0e—12
SuperLU 1.3e—06 3.9e—05 3 4.9e—16 1l.1e—-12
TWOTONE MUMPS 3.2e—13 1.6e—10 2 1.6e—15 2.3e—11
SuperLU 1.0e—06 9.0e—03 4 6.1e—16 1.6e—11

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

406 . P. R. Amestoy et al.

Table VII. Influence of Permuting Large Entries onto the Diagonal (Using
MC64) on the Time (in Seconds) for the Analysis Phase of MUMPS and SuperLU

Matrix Solver Preprocess. Total MC64 AMD
BBMAT MUMPS AMD 4.7 — 3.0
— MC64+AMD 7.2 2.1 3.1
SuperLU AMD 11.3 — 2.8
— MC64+AMD 11.8 2.0 2.9
ECL32 MUMPS AMD 3.9 — 2.3
— MC64+AMD 4.5 0.5 2.3
SuperLU AMD 9.0 — 2.1
— MC64+AMD 14.1 0.6 2.1
FIDAPM11 MUMPS AMD 1.7 — 0.6
— MC64+AMD 13.1 104 1.6
SuperLU AMD 2.7 — 0.5
— MC64+AMD 14.1 9.1 14
GARONZ2 MUMPS AMD 0.4 — 0.1
— MC64+AMD 0.8 0.4 0.1
SuperLU AMD 0.8 — 0.1
— MC64+AMD 1.2 0.4 0.1
INVEXTR1 MUMPS AMD 2.9 — 1.2
— MC64+AMD 47.2 42.6 1.5
SuperLU AMD 7.1 — 1.2
— MC64+AMD 45.8 36.8 1.5
LHR71C MUMPS AMD 47.5 — 39.4
— MC64+AMD 34.0 31.0 2.0
SuperLU AMD 120.6 — 35.0
— MC64+AMD 32.0 26.9 1.8
LNSP3937 MUMPS AMD 0.1 — 0.1
— MC64+AMD 0.2 0.1 0.1
SuperLU AMD 0.1 — 0.1
— MC64+AMD 0.3 0.1 0.1
MIXTANK MUMPS AMD 3.2 — 0.8
— MC64+AMD 5.8 2.2 0.9
SuperLU AMD 8.4 — 0.8
— MC64+AMD 11.0 2.2 0.9
RMA10 MUMPS AMD 2.3 — 0.4
— MC64+AMD 4.6 2.3 0.5
SuperLU AMD 3.6 — 0.5
— MC64+AMD 6.1 2.3 0.6
TWOTONE MUMPS AMD 12.7 — 8.7
— MC64+AMD 8.8 1.7 4.8
SuperLU AMD 21.4 — 7.9
— MC64+AMD 12.0 1.7 4.4
WANG4 MUMPS AMD 1.7 — 0.8
— MC64+AMD 2.0 0.2 0.8
SuperLU AMD 2.4 — 0.7
— MC64+AMD 2.6 0.2 0.7

the performance further in Section 5. We also notice that, for both orderings,
SuperLU exploits the asymmetry of the matrix somewhat better than MUMPS (see
BBMAT With structural symmetry 0.53). We expect the asymmetry of the problem
to be better exploited by MUuMPS when the approach described in Amestoy and
Puglisi [2000] is implemented.

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers

Table VIII. Influence of the Symmetric Sparsity Orderings on the
Fill-in and Floating-Point Operations on the Factorization of
Unsymmetric Matrices. (MC64 is not Used)

NZin LU Flops
Matrix Ordering Solver x108 x10?
BBMAT AMD MUMPS 46.1 415
SuperLU 41.2 34.0
ND MUMPS 35.8 25.7
SuperLU 33.9 23.5
ECL32 AMD MUMPS 429 64.6
SuperLU 42.4 68.3
ND MUMPS 24.8 20.9
SuperLU 24.3 20.7
INVEXTR1 AMD MUMPS 31.2 35.9
SuperLU 24.2 21.3
ND MUMPS 16.2 8.1
SuperLU 13.3 5.9
MIXTANK AMD MUMPS 39.1 64.4
SuperLU 38.2 64.4
ND MUMPS 19.6 13.2
SuperLU 18.6 12.9
12 T T T T T
- El VUMPS
[1 SuperLU
10
8 [e
8
g 6
&
4+
2 —....... '} |.... | [... ... |.-..p | ... B - - |
bbmat ecl32 invextr1 fidapm11 mixtank rma10 wang4

407

Fig. 5. Time comparison of the analysis phases of MUMPS and SuperLU. MC64 preprocessing is not
used and AMD ordering is used.

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

408 . P. R. Amestoy et al.

Table IX. Factorization Time (in Seconds) of Large Test Matrices on the CRAY T3E

Number of processors

Matrix | Ordering | Solver | 1 4 8 16 | 32 | 64 | 128 | 256 | 512
BBMAT AMD MUMPS — 448 23.6 |15.7(12.610.1| 95| 9.4 (113
SuperLU | — | 64.7| 36.6 |21.3|12.8| 9.2| 7.2| 6.7| 6.8

ND MUMPS — 32.1| 108 [12.3|104| 9.1| 78| 89| 9.7

SuperLU | — [132.9| 72.5 |39.8|23.5|15.6|11.1| 9.9| 9.6

ECL32 AMD MUMPS — | 53.1| 31.3 |20.7]|14.7|13.5[12.9|14.0 | 14.1
SuperLU | — |106.8 | 56.7 |31.2|18.3|12.3| 8.2| 6.8| 6.5

ND MUMPS — | 239|134 | 97| 66| 56| 54| 54| 6.3

SuperLU| — | 485|266 |15.7| 96| 76| 56| 57| 6.1

INVEXTR1 ND muvps | 31.0| 122 6.1 | 40| 3.7 3.1| 39| 50| 65
SuperLU [68.2| 21.3| 128 | 82| 56| 49| 38.7| 35| 3.8

MIXTANK ND muvps | 40.8| 124 7.5 | 53| 3.8| 3.3| 32| 3.6| 4.8
SuperLU | 88.1 | 25.2| 14.2 86| 56| 46| 3.1| 3.1| 3.1

TWOTONE MC64 MUMPS — | 40.3 | 21.8|17.5|12.6|12.9|11.4|11.0|11.7
+AMD SuperLU | — |[103.8| 57.8|32.8|19.5|13.3| 9.7| 76| 9.0

“—” Indicates not enough memory.

5. PERFORMANCE ANALYSIS ON GENERAL MATRICES

5.1 Performance of the Numerical Phases

In this section, we compare the performance, and study the behaviour, of the
numerical phases (factorization and solve) of the two solvers.

For the sake of clarity, we will only show results using the sparsity
ordering giving the least factorization time for each approach. When the best
ordering for one code is different from that for the other, results with both or-
derings will be given. This means that results with both nested dissection and
minimum degree orderings are given, thus illustrating the different sensitivity
of the codes to the choice of the ordering. We note that, even when the same
ordering is given to each solver, they will usually not perform the same number
of operations. In general, SuperLU performs fewer operations than MUMPS because
it better exploits the asymmetry of the matrix, although the execution time is
usually less for MUMPS because of the Level 3 BLAS effect (see Section 5.1.1 for
a detailed discussion).

Although results are very often matrix dependent, we will try, as much as
possible, to identify some general properties of the two solvers.

5.1.1 Study of the Factorization Phase. In Table IX we show the factoriza-
tion time of both solvers. On the smaller matrices, we report in Table X only
results with up to 64 processors.

We observe that MuMPs is usually faster than SuperLU, and is significantly
so on a small number of processors. We believe there are two reasons. First,
MuMPS handles symmetric and more regular data structures better than SuperLU
because MuMPS uses Level 3 BLAS kernels on bigger blocks than those used
within SuperLU. As a result, the Megaflop rate of MUMPS on one processor is on
average about twice that of the SuperLU factorization. This is also evident in the
results on the smaller test problems in Table X and from the results on 3-D grid

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 409

Table X. Factorization Time (in Seconds) of Small Test Matrices on the CRAY T3E

Number of processors
Matrix Ordering Solver 1 4 8 16 32 64
FIDAPM11 | AMD MUMPS 309 | 11.1 7.9 59 | 49 | 46
SuperLU | 584 | 16.2 | 10.2 6.1 | 42 | 34
LHR71C MC64+AMD | MUMPS 12.7 4.1 2.7 16 | 14 | 14
SuperLU | 345 | 16.8 | 12,5 | 106 | 88 | 9.5
RMA10 AMD MUMPS 7.6 2.8 2.1 20 | 19 | 1.8
SuperLU | 11.5 5.2 3.8 32 | 27 | 29
WANG4 AMD MUMPS 299 | 10.8 6.3 4.7 35 | 33
SuperLU 57.0 17.8 10.6 6.8 4.8 4.2

problems in Section 6. Note that, even on the matrix Tworong, for which SuperLU
performs three times fewer operations than MUMPS, MUMPS is over 2.5 times faster
than SuperLU on four processors. On a small number of processors, we also notice
that superLU does not always fully benefit from the reduction in the number of
operations due to the use of a nested dissection ordering (see BBmaT with SuperLU
using 4 processors).

Furthermore, we can see that, with matrices that are structurally very asym-
metric, SuperLU can be much less scalable than MuMPS. For example, on matrix
tur71c in Table X, speedups of 3.9 and 9.1 are obtained on 32 processors with
SuperLU and MUMPS, respectively. This is due to the two parallel limitations of
the current SuperLU algorithm described in Section 3.2. First, SuperLU does not
fully exploit the parallelism of the elimination dags. Second, the pipelining
mechanism does not fully benefit from the sparsity of the factors (a blocked
column factorization should be implemented). This also explains why SuperLU
does not fully benefit, as MUMPS does, from the better balanced graph generated
by a nested dissection ordering.

We see that the ordering very significantly influences the performance of
the codes (see results with matrices BemMaT and £cr32) and, in particular, MUMPS
generally outperforms SuperLU when a nested dissection ordering is used. While
this is not always true on the largest number of processors, the absolute best
performance is often obtained by MUMPS on a fewer number of processors. On
the other hand, if we use the minimum degree ordering, SuperLU can be faster
than MUMPS on a large number of processors. We also see that, on most of our un-
symmetric problems, neither solver provides enough parallelism to effectively
benefit from using more than 256 processors. Our lack of other large unsym-
metric systems gives us few data points in this regime but one might expect
that, independently of the ordering, the 2D distribution used in SuperLU should
provide better scalability (and hence eventually better performance) on a large
number of processors, than the mixed 1D and 2D distribution used in MUMPS.
To further analyse the scalability of our solvers, we consider three dimensional
regular grid problems in Section 6.

To better understand the performance differences observed in Tables IX
and X and to identify the main characteristics of our solvers we show, in
Table XI, the average communication volume. The speed of communication
can very much depend on the number and the size of the messages. We also

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

410 . P. R. Amestoy et al.

Table XI. Maximum Size of the Messages (Max in Mbytes), Average Volume of Communication
(Vol in Mbytes) and Number of Messages Per Processor (#Mess) for Large Matrices
during Factorization

Number of processors
4 16 64

Matrix | Ordering | Solver | Max | Vol | #Mess | Max Vol #Mess | Max Vol #Mess
BBMAT AMD MUMPS 4.9 44 3240 | 3.3 63 1700 | 29 20 2257
SuperLU | 0.18 | 81| 23412 | 0.09 61 34176 | 0.05 35 35035

ND MUMPS 2.2 7 2214 | 2.8 43 1441 | 1.5 48 3228

SuperLU | 0.17 | 82| 30698 | 0.09 62 45598 | 0.04 36 50925

ECL32 AMD MUMPS 9.7 91 5451 | 3.7 117 2585 | 2.9 54 2743
SuperLU | 0.32 | 90 | 27437 | 0.16 67 37486 | 0.09 39 34981

ND MUMPS 8.5 37 3663 | 2.5 60 1981 | 1.5 29 2679

SuperLU | 0.25 | 56 28966 | 0.13 42 41172 | 0.07 24 41271

FIDAPM11 | AMD MUMPS 2.5 28 3000 | 2.4 22 1471 | 24 6 1323
SuperLU | 0.15 | 27 | 14768 | 0.08 20 19114 | 0.04 12 15621

INVEXTRL | ND MUMPS 2.2 13 2320 | 1.1 18 1314 | 1.5 7 1550
SuperLU | 0.15 | 31| 17774 | 0.08 23 25824 | 0.05 13 27123

LHR71C MC64+AMD | MUMPS 1.0 1 96 | 1.1 1 342 | 1.1 1 377
SuperLU | 0.04 | 21| 72932 | 0.03 15 95653 | 0.02 8 91640

MIXTANK | ND MUMPS 3.5 30 3138 | 1.7 33 1650 | 1.2 11 1616
SuperLU | 0.19 | 40 | 13667 | 0.11 30 19635 | 0.05 18 19064

RMA10 AMD MUMPS 0.7 3 114 | 0.7 2 302 | 0.7 1 337
SuperLU | 0.06 | 18 | 11346 | 0.03 13 14124 | 0.02 7 10883

TWOTONE | MC64 MUMPS 8.8 61 5076 | 2.9 139 4144 | 2.1 49 2762
+AMD SuperLU | 0.26 | 27 | 120006 | 0.15 20 153995 | 0.05 11 104906

WANG4 AMD MUMPS 3.9 16 3483 | 1.5 27 1682 | 1.5 8 1215
SuperLU | 0.19 | 24 | 27728 | 0.10 18 34495 | 0.05 10 27561

indicate the maximum size of the messages and the average number of mes-
sages. To overlap communication by computation, MUMPS uses fully asynchronous
communications (during both sends and receives). The use of non-blocking
sends during the more synchronous scheduled approach used by SuperLU also
enables overlapping between communication and computation.

It is difficult to make any definitive comment on the average volume of com-
munication, from the results in Table XI. Overall, it is broadly comparable, with
either MUMPS or SuperLU sometimes having lower volume, occasionally by a sig-
nificant amount. However, although the average volume of messages with 64
processors can be comparable with both solvers, there is between one and two
orders of magnitude difference in the average number of messages and there-
fore in the average size of the messages. This is due to the much larger number
of messages involved in a fan-out approach (SuperLU) compared to a multifrontal
approach (MuMPS). Note that, with MUMPS, the number of messages includes the
messages (one integer) required by the dynamic scheduling algorithm, to up-
date the load on the processes.

The average volume of communication per processor, of each solver, depends
very much on the number of processors. While, with SuperLU, increasing the
number of processors will generally decrease the communication volume per
processor, it is not always the case with MuMPS. Note that adding some global
information to the local dynamic scheduling algorithm of MuMPS will help to

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 411

Table XII. Solve Time (in Seconds) for Large Matrices on the CRAY T3E. “+IR” Shows the
Time Spent Improving the Initial Solution Using Iterative Refinement

Number of processors
Matrix | Ordering | Solver 1 4 8 16 32 64 | 128 | 256 | 512

BBMAT AMD MUMPS — 1052037029 |0.28 |0.28 | 0.31 | 0.33 | 0.38
SuperLU — 133|116 |0.75]0.71 | 0.53 | 0.51 | 0.50 | 0.44

SuperLU+ik | — | 1.80 | 1.48 | 1.01 | 0.93 | 0.72 | 0.68 | 0.62 | 0.57

ND MUMPS — 10.37(0.35(0.24 | 0.26 | 0.26 | 0.28 | 0.30 | 0.32

SuperLU — 1199 |1.60| 1.07 | 0.93 | 0.76 | 0.65 | 0.59 | 0.44

SuperLU+siR | — |[2.43|1.95|1.34|1.16 | 0.96 | 0.86 | 0.78 | 0.62

ECL32 AMD MUMPS — 1064 |0.46|0.37 | 0.38 | 0.36 | 0.42 | 0.46 | 0.53
SuperLU — | 1.721.60| 1.09 | 1.13 | 0.75 | 0.79 | 0.66 | 0.56

ND MUMPS — 1047032028]0.26|0.24|0.28 | 0.31|0.36

SuperLU — | 152 |1.57|1.02|0.72 | 0.68 | 0.68 | 0.56 | 0.49

INVEXTR1 ND MUMPS 0.5710.30|0.18 | 0.14 | 0.14 | 0.13 | 0.16 | 0.18 | 0.21

MUMPS+IR 1.50 | 0.16 | 0.11 | 0.27 | 0.26 | 0.24 | 0.23 | 0.31 | 0.39
SuperLU 1.48 | 0.80 | 0.77 | 0.53 | 0.50 | 0.38 | 0.29 | 0.26 | 0.21
SuperLUs+r | 2.75 | 1.24 | 1.07 | 0.78 | 0.71 | 0.57 | 0.44 | 0.42 | 0.35

MIXTANK ND MUMPS 0.67 |1 0.26 | 0.18 | 0.14 | 0.14 | 0.13 | 0.16 | 0.18 | 0.21
SuperLU 1.47 {0.73|10.68 | 0.45(0.43|0.31|0.23 | 0.21 | 0.17

TWOTONE MC64 MUMPS — [1.03]0.81|0.84|0.86|0.85|0.92]|0.96 | 1.05
+AMD SuperLU — 1349 (3.88|269|261|1.58]|1.23|1.03]|0.86

SuperLU+IR | — | 6.66 | 5.65 | 7.44 | 3.42 | 2.73 | 1.59 | 1.41 | 1.17

«

—” Indicates not enough memory.

increase the granularity of the 1D-node subtasks without losing parallelism
(see Section 3.1) and thus can result in a decrease in the average volume of
communication on a large number of processors.

5.1.2 Study of the Solve Phase. In section 4.1 we discussed the difference
in the numerical behaviour of the two solvers, showing that, in general, SuperLU
will involve more steps of iterative refinement than MuMPS, to obtain the same
accuracy in the solution.

In this section, we focus on the time spent to obtain the solution. We apply
enough steps of iterative refinement to ensure that the componentwise relative
backward error (Berr) is less than /¢ = 1.48 x 1078. Each step of iterative
refinement involves not only a forward and a backward solve but also a matrix-
vector product with the original matrix. With MuMps, the user can provide the
input matrix in a very general distributed format [Amestoy et al. 2001]. This
functionality was used to parallelize the matrix-vector products. With SuperLy,
the parallelization of the matrix-vector product was easier because the input
matrix is duplicated on all the processors.

In Table XII, we report both the time to perform one solution step (using the
factorized matrix to solve Ax = b) and, when necessary (Berr greater than /),
the time to improve the solution using iterative refinement (lines with “+IR”).
With SuperLU, except on cL32 and mMixrank which did not require any iterative re-
finement, one step of iterative refinement was required and was always enough
to reduce the backward error to /e. With MUMPS, iterative refinement was only
required on the matrix mwvextrl and the backward error was already so close to
% (on one processor Berr = 3.06 x 10~8) that on 4 and 8 processors no step

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

412 . P. R. Amestoy et al.

Table XIII. Solve Time (in Seconds) for Small Matrices on the CRAY T3E

Number of processors

Matrix Ordering Solver 1 4 8 16 32 64
FIDAPM11 | AMD MUMPS 048 | 0.23 | 0.22 | 0.19 | 0.18 | 0.17
SuperLU | 1.22 | 0.55 | 0.51 | 0.33 | 0.33 | 0.23
LHR71C MC64+AMD | MUMPS 0.90 | 0.53 | 0.29 | 0.21 | 0.20 | 0.22
SuperLU | 245 | 2.02 | 2.14 | 1.56 | 1.55 | 1.17

RMA10 AMD MUMPS 044 | 021 | 0.22 | 0.20 | 0.21 | 0.21
SuperLU | 0.82 | 0.50 | 0.47 | 0.35 | 0.33 | 0.26
WANG4 AMD MUMPS 0.57 | 0.27 | 0.19 | 0.17 | 0.15 | 0.15

SuperLU | 1.20 | 0.90 | 1.01 | 0.68 | 0.68 | 0.50

of iterative refinement was required (Berr for the initial solution was already
equal to 1.17 x 1078). In this case, the time reported in the row “+IR” corre-
sponds to the time to perform the computation of the backward error. We first
observe (compare, for example, Tables IX and XII) that, on a small number
of processors (less than 8), the solve phase is almost two orders of magnitude
less costly than the factorization. On a large number of processors, because
our solve phases are relatively less scalable than the factorization phases,
the difference drops to one order of magnitude. On applications for which a
large number of solves might be required per factorization, this could become
critical for the performance and might have to be addressed in the future. We
show solution times for our smaller matrices in Table XIII where we have not
run iterative refinement.

The performance reported in Tables XII and XIII would appear to suggest
that the regularity in the structure of the matrix factors, generated by the
factorization phase of MUMPS, is responsible for a faster solve phase than that of
SuperLU for up to 256 processors. On 512 processors, the solve phase of SuperLU is
occasionally faster than that of MUMPS, although in all cases the fastest solve time
is recorded by MUMPS usually on a fewer number of processors. The cost of itera-
tive refinement can significantly increase the cost of obtaining a solution. With
SuperLU, because of static pivoting, it is more likely that iterative refinement
will be required to obtain an accurate solution on numerically difficult matri-
ces (see BBMAT, INVEXTR1 and Tworone). With MuMPs, the use of threshold pivoting
during the factorization will reduce the number of matrices for which iterative
refinement is required. (In our set, only iNvExTr1 requires iterative refinement).
For both solvers, the use of MC64 to preprocess the matrix can also reduce the
number of steps of iterative refinement, and even avoid the need to use it in
some cases (see Section 4.1).

5.2 Memory Usage

In this section, we study the memory used during factorization as a function of
both the solver and the number of processors (see Table XIV).

We want to first point out that, because of the dynamic scheduling approach
and the threshold pivoting used in MUMPS, the analysis phase cannot fully predict
the space that will be required on each processor and an upper bound is there-
fore used for the memory allocation. With the static task mapping approach
used in SuperLU, the memory used can be predicted during the analysis phase.

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 413

Table XIV. Memory Used during Factorization (in Megabytes, Per Processor)

Number of processors
4 16 64

Matrix Ordering Solver Avg. Max. Avg. Max. Avg. Max.
BBMAT AMD MUMPS 147 176 52 65 32 40
SuperLU 113 114 50 51 33 34
ND MUMPS 114 118 44 53 28 35
SuperLU 124 128 60 61 43 44
ECL32 AMD MUMPS 190 212 55 64 32 41
SuperLU 113 115 42 44 24 25
ND MUMPS 132 139 39 44 25 28
SuperLU 79 81 33 34 21 22
FIDAPM11 AMD MUMPS 65 67 25 30 16 19
SuperLU 38 39 16 16 10 10
INVEXTR1 ND MUMPS 65 85 23 28 17 22
SuperLU 47 48 22 22 15 16
LHR71C MC64 MUMPS 54 48 22 25 16 20
+AMD SuperLU 49 51 27 29 21 21
MIXTANK ND MUMPS 84 87 29 31 19 21
SuperLU 55 56 23 23 14 15
RMA10 AMD MUMPS 39 42 17 25 11 21
SuperLU 32 33 15 16 10 11
TWOTONE MC64 MUMPS 167 180 57 67 42 60
+AMD SuperLU 66 80 35 41 24 24
WANG4 AMD MUMPS 69 82 22 23 15 20
SuperLU 33 34 14 14 8 9

In this section, we only compare the memory actually used by the solvers dur-
ing the factorization phase. This includes reals, integers and communication
buffers. Storage for the initial matrix is, however, not included but we have seen,
in Amestoy et al. [2001], that the input matrix can also be provided in a general
distributed format and can be handled very efficiently by the solver. This option
is available in MUMPS. In SuperLU, the initial matrix is currently duplicated on all
processors.”

We notice, in Table XIV, a significant reduction in the memory required
when increasing the number of processors. We also see that, in general, SuperLU
requires less memory than MuMPS, although this is less apparent when many
processors are used, thus showing the better memory scalability of MuMPS. One
can observe that there is little difference between the average and maximum
memory usage, showing that both algorithms are well balanced, with SuperLU
the better of the two.

Note that memory scalability can be critical on globally addressable plat-
forms where parallelism increases the total memory used. On purely dis-
tributed machines such as the T3E, the main factor remains the memory used
per processor, which should allow large problems to be solved when enough
processors are available.

"For MUMPS, note that the storage reported still includes another internal copy of the initial matrix
in a distributed arrowhead form, which is necessary for the assembly operations during the mul-
tifrontal algorithm.

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

414 . P. R. Amestoy et al.

T T T T T T
300 .
2501 a
200 1
[}
©
o
°
® 150 1
o
[}
=
1001 a
501 1
¥ MUMPS-SYM
= MUMPS-UNS
SuperlLU
O 1 Il Il Il 1 1 Il 1
1 2 4 8 16 32 64 128

Processors

Fig. 6. Megaflop rate per processor (cubic grids, nested dissection).

6. PERFORMANCE ANALYSIS ON 3-D GRID PROBLEMS

To further analyse and understand the scalability of our solvers, we report, in
this section, on results obtained for the 11-point discretization of the Laplacian
operator on three-dimensional grid problems.

We consider a set of 3-D cubic (NX=NY =NZ) and rectangular (NX, NX/
4, NX/8) grids on which a nested dissection ordering is used. The size of the
grids used, the number of operations and the timings, are reported in Ta-
ble XV. When increasing the number of processors, we have tried as much
as possible to maintain a constant number of operations per processor, while
keeping as much as possible, the same shape of grids. Not all of these con-
straints could be satisfied thus the number of operations per processor is not
completely constant.

Since all of our test matrices are symmetric, we can use MUMPS to compute
either an LDLT factorization, referred to as MuMPS-sYM, or an LU factorization,
referred to as MUMPS-UNS. SuperLU will compute an LU factorization. Note that,
for a given matrix, the unsymmetric solvers (SuperLU and MUMPS-UNS) perform
roughly twice as many operations as MUMPS-SYM.

To overcome the problem of the number of operations per processor being
non-constant, we first report in Figures 6 and 7, the Megaflop rate per pro-
cessor for our three approaches on cubic and rectangular grids, respectively.
In our context, the Megaflop rate is meaningful because on those grid prob-
lems, the number of operations is almost identical for MUMPS-UNS and SuperLU (see
Table XV), thus it corresponds to the absolute performance of the approach used
for a given problem. We first notice that on up to 8 processors, and indepen-
dent of the grid shape, MUMPS-UNS is about twice as fast as SuperLU, and also

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 415

Table XV. Factorization Time (in seconds) on Cray T3E. LU Factorization is Performed
for MUMPS-UNS and SuperLU, LDLT for MUMPS-SYM

LDLT factorization LU factorization
MUMPS-SYM MUMPS-UNS SuperLU
Grid size flops flops flops
Processors | NX] NY I NZ | x10? time x 109 time x109 time

Cubic grids (nested dissection)

1 29 3.6 18.9 7.2 24.0 7.2 56.3
2 33 8.0 21.2 16.0 29.0 15.9 61.8
4 36 13.4 20.3 26.8 27.6 26.8 52.0
8 41 30.1 18.3 60.1 32.8 60.0 60.2
16 46 59.1 19.5 118.1 32.6 117.9 59.8
32 51 112.7 21.3 225.3 41.2 224.9 64.7
64 57 222.7 28.4 445.1 57.5 444.7 67.3
128 64 444.2 48.3 887.8 95.7 886.4 71.1
Rectangular grids (nested dissection)

1 9% 24 12| 22 13.2 4.5 16.6 4.5 33.3
2 110 28 13| 4.8 12.9 9.5 17.2 9.6 37.6
4 120 30 15| 9.0 12.1 17.9 16.7 17.9 36.3
8 136 34 17| 184 13.7 36.8 20.1 36.6 36.3
16 152 38 19| 36.5 12.5 72.8 21.0 72.7 42.2
32 168 42 21| 67.8 14.3 135.5 25.4 135.3 43.8
64 184 46 23 |118.2 16.3 236.2 32.5 236.0 46.6

128 208 52 26 |243.1 24.7 485.8 44 .4 485.6 56.1

250+ -
200} :
[}
S
o 150+ _
o
=
[o))
()
=
100 B
50 1
* MUMPS-SYM
-5~ MUMPS-UNS
SuperLU
O Il 1 Il 1 1 1 Il Il
1 2 4 8 16 32 64 128

Processors

Fig. 7. Megaflop rate per processor (rectangular grids, nested dissection).

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

416 . P. R. Amestoy et al.

1.2 T T T

o
oo
T

Efficiency
o
o
T

0.4 E
0.2 : : .
% MUMPS-SYM
-=- MUMPS-UNS
SuperLU :
0 1 L L 1 1 L 1 |
1 2 4 8 16 32 64 128

Processors

Fig. 8. Parallel efficiency (cubic grids, nested dissection).

has a much higher Megaflop rate than MuMPS-SYM. On 128 processors on both
rectangular and cubic grids, all three solvers have similar Megaflop rates per
processor.

In Figures 8 and 9, we show the parallel efficiency on cubic and rectangular
grids respectively. The efficiency of a solver on p processors is computed as the
ratio of its Megaflop rate per processor on p processors over its Megaflop rate
on 1 processor.

SuperLU is generally more efficient on cubic grids than MUMPS-UNS even on
a relatively small number of processors. MUMPS-SYM is relatively more effi-
cient than MUMPS-UNS and the MuMPS-sYM efficiency is very comparable to that
of SuperLU. On a large number of processors SuperLU is significantly more effi-
cient than MuMPs-UNS. The peak ratio between the methods is reached on cubic
grids (128 processors) for which SuperLU is about three and two times more
efficient than MUMPS-UNS and MUMPS-SYM, respectively. On rectangular grids, the
situation is different, with MUMPS-SYM showing comparable parallel efficiency
to SuperLU.

Finally, we report in Table XVI a quantitative evaluation of the overhead
due to parallelism on cubic grids, using the analysis tool vampir [Nagel et al.
1996]. In the rows “computation”, we report the percentage of the time spent
doing numerical factorization. MPI calls and idle time due to communications or
synchronization are reported in rows “overhead” of the table.

Table XVI shows that SuperLU has less overhead than either version of
MuMps. We also observe a better parallel behaviour of MUMPS-sYM with respect to
MUMPS-UNS, as analysed in Amestoy et al. [2000], which is mainly due to the fact

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 417

1.2 T T T T

o
@
T

Efficiency
o
[
T

0.4r : : A
*- MUMPS-SYM
- MUMPS-UNS
SuperlLU
0.2 » » 2
0 1 Il 1 1 Il Il Il 1
1 2 4 8 16 32 64 128

Processors

Fig. 9. Parallel efficiency (rectangular grids, nested dissection).

Table XVI. Percentage of the Factorization Time (Cubic Grids,
NX=NY =NZ) Spent in Computation and in Overhead Due to
Communication and Synchronization

Nprocs | Grid size MUMPS-SYM | MUMPS-UNS | SuperLU
4 (NX=36)
computation 69% 76% 87%
overhead 31% 24% 13%
16 (NX=46)
computation 67% 69% 75%
overhead 33% 31% 25%
64 (NX=5T7)
computation 50% 36% 56%
overhead 50% 64% 44%

that node level parallelism provides relatively more parallelism in a symmetric
context.

7. CONCLUDING REMARKS

In this paper, we have presented a detailed analysis and comparison of two
state-of-the-art parallel sparse direct solvers—a multifrontal solver, MUMPS,
and a supernodal solver, SuperLU. Our analysis is based on experiments us-
ing a massively parallel distributed-memory machine—the Cray T3E, and
eleven matrices from different applications. Our analysis addresses many
aspects of the efficiency of the solvers, including the role of preordering
steps and their costs, the accuracy of the solution, sparsity preservation,

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

418 . P. R. Amestoy et al.

the total memory required, the amount of interprocessor communication, the
times for factorization and triangular solves, and scalability. We found that
both solvers have strengths and weaknesses. We summarize our observations
as follows.

—Both solvers can benefit from a numerical preordering scheme implemented
in MC64, although SuperLU benefits to a greater extent than MuMPS. For MuMPs,
this helps reduce the number of off-diagonal pivots and the number of delayed
pivots. For SuperLU, this may reduce the need for small diagonal perturbations
and the number of iterative refinements. However, since this permutation is
asymmetric, it may destroy the structural symmetry of the original matrix,
and cause more fill-in and operations. This tends to introduce a greater per-
formance penalty for MUuMPS than for SuperLU although recent work by Amestoy
and Puglisi [2000] might affect this conclusion. This is why by default MuMPS
does not use MC64 on fairly symmetric matrices.

—MUMPS usually provides a better initial solution, due to the effect of dynamic
versus static pivoting. With one step of iterative refinement, SuperLU usually
obtains a solution with about the same level of accuracy.

—Both solvers can accept as input, any fill-in reducing ordering that is applied
symmetrically to both the rows and columns. MUMPS performs better with
nested dissection than minimum degree, because it can exploit the better
tree parallelism provided by a nested dissection ordering, whereas SuperLU
does not exploit this level of parallelism, and its parallel efficiency is less
sensitive to different orderings.

—Given the same ordering, SuperLU better preserves the sparsity and the asym-
metry of the L and U factors. SuperLU requires less memory than MUMPS, in
general, and especially so with smaller numbers of processors. On 64 proces-
sors, MUMPS requires 25—-30% more memory on average.

—Although the total volume of communication is comparable for both solvers.
MUMPS requires many fewer messages, especially with large numbers of pro-
cessors. The difference can be up to two orders of magnitude. This is partly
intrinsic to the algorithms (multifrontal versus fan-out), and partly due to
the 1D (MumMPs) versus 2D (SuperLU) matrix partitioning.

—MuMpPs is usually faster in both factorization and solve phases. The speed
penalty for SuperLU partly comes from the code complexity that is required
to preserve the irregular sparsity pattern, and partly because of the greater
number of communication messages. With more processors, SuperLU shows
better scalability, because its 2D partitioning scheme does a better job in
keeping all of the processors busy despite the fact that it introduces more
messages.

As we said in the introduction, we started this exercise with the intention of
comparing a wider range of sparse codes. However, as we have demonstrated
in the preceding sections, the task of conducting such a comparison is very
complex. We do feel though, that the experience we have gained in this task
will be useful in extending the comparisons in the future.

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 419

Table XVII. Distributed Memory Codes

Code Technique Scope Availability Ref

CAPSS Multifrontal SPD www.netlib.org/scalapack [Heath and Raghavan 1997]
MUMPS Multifrontal SYM/UNS www.enseeiht.fr/apo/MUMPS [Amestoy et al. 2001]
PaStiX Fan-in SPD see cap‘cion§ [Henon et al. 1999]
PSPASES Multifrontal SPD www.cs.umn.edu/~mjoshi/pspases [Gupta et al. 1997]
SPOOLES Fan-in SYM/UNS www.netlib.org/linalg/spooles [Ashcraft and Grimes 1999]
SuperLU Fan-out UNS www.nersc.gov/~xiaoye/SuperLU [Li and Demmel 1999]

S+ Fan-out' UNS www.cs.ucsb.edu/research/S+ [Fu et al. 1998]

WSMP? Multifrontal SYM IBM product [Gupta 2000]

§dept—info .labri.u-bordeaux.fr/~ramet/pastix.
fUses Q R storage to statically accommodate any LU fill-in.
iOnly object code for IBM is available. No numerical pivoting performed.

Table XVIII. Shared Memory Codes

Code Technique Scope Availability Ref

GSPAR Interpretative UNS Grund [Borchardt et al. 1997]
MA41 Multifrontal UNS www.cse.clrc.ac.uk/Activity/HSL [Amestoy and Duff 1993]
MA49 Multifrontal QR RECT www.cse.clrc.ac.uk/Activity/HSL [Amestoy et al. 1996]
PanelLLT Left-looking SPD Ng [Ng and Peyton 1993]
PARDISO Left-right looking UNS Schenk [Schenk et al. 2000]
PSLDLT! Left-looking SPD SGI product [Rothberg 1994]
PSLDU! Left-looking UNS SGI product [Rothberg 1994]
SPOOLES Fan-in SYM/UNS www.netlib.org/linalg/spooles [Ashcraft and Grimes 1999]
SuperLU Left-looking UNS www.nersc.gov/~xiaoye/SuperLU [Demmel et al. 1999]
wsMP} Multifrontal SYM/UNS IBM product [Gupta 2000]

fOnly object code for SGI is available.
iOnly object code for IBM is available.

In Tables XVII and XVIII, we summarize the major characteristics of those
parallel sparse direct codes of which we are aware. A clear description of the
terms used in the tables is given by Heath et al. [1991].

ACKNOWLEDGMENTS

We want to thank James Demmel, Jacko Koster and Rich Vuduc for very helpful
discussions. We are grateful to Chiara Puglisi for her comments on an early
version of this article and her help with the presentation. We also want to
thank John Reid for his comments on the first version of this paper and the
anonymous referees for their helpful comments.

REFERENCES

AwmgEstoy, P. R., Davis, T. A, anp Durr, I. S. 1996. An approximate minimum degree ordering
algorithm. SIAM J. Matrix Anal. Appl. 17, 886-905.

AwmEsToy, P. R. aND Durr, 1. S. 1993. Memory management issues in sparse multifrontal methods
on multiprocessors. Int. J. Supercomput. Appl. 7, 64-82.

AwmEsToy, P. R., Durr, L. S., AND UEXCELLENT, J.-Y. 2000. Multifrontal parallel distributed symmetric
and unsymmetric solvers. Comput. Methods Appl. Mech. Eng., 501-520.

Awmgstoy, P. R., Durr, 1. S., UEXCELLENT, J.-Y., AND KoSTER, J. 2001. A fully asynchronous multi-
frontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 1, 15-41.
AwmgEsToy, P. R., Durr, L. S., anp PucLisi, C. 1996. Multifrontal QR factorization in a multiprocessor

environment. Int. J. Num. Lin. Alg. Appl. 3(4), 275-300.

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

420 . P. R. Amestoy et al.

AwmEstoy, P. R., anp Pucrisi, C. 2000. An unsymmetrized multifrontal LU factorization. Tech.
Rep. RT/APO/00/3, ENSEEIHT-IRIT. Also Lawrence Berkeley National Laboratory report
LBNL-46474.

Arior1, M., DEMMRL, J., AND Durr, I. S. 1989. Solving sparse linear systems with sparse backward
error. SIAM J. Matrix Anal. Appl. 10, 165-190.

AsHCrAFT, C. AND GriMES, R. G. 1999. SPOOLES: An object oriented sparse matrix library. In
Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing. San
Antonio, Texas. http://www.netlib.org/linalg/spooles.

Benzi, M., Haws, J. C., anD Tuma, M. 2000. Preconditioning highly indefinite and nonsymmetric
matrices. SIAM J. Sci. Comput. 22, 1333-1353.

BorcHARDT, J., GRUND, F., aAND Horn, D. 1997. Parallel numerical methods for large systems of
differential-algebraic equations in industrial applications. Tech. Rep. 382, Weierstrag-Institut
fir Angewandte Analysis und Stochastik, Berlin.

DemMEL, J. W., EisEnstat, S. C., GiLBERT, J. R., L1, X. S., anp Liv, J. W. H. 1999. A supernodal
approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20, 3, 720-755.

DEMMEL, J. W., GILBERT, J. R., AND L1, X. S. 1999. An asynchronous parallel supernodal algorithm
for sparse Gaussian elimination. SIAM J. Matrix Anal. Appl. 20, 4, 915-952.

Durr, I. S., GRiMES, R. G., AND LEWIs, J. G. 1997. The Rutherford-Boeing Sparse Matrix Collection.
Tech. Rep. RAL-TR-97-031, Rutherford Appleton Laboratory.

Durr, 1. S. AND KoSTER, J. 1999. The design and use of algorithms for permuting large entries to
the diagonal of sparse matrices. SIAM oJ. Matrix Anal. Appl. 20, 4, 889-901.

Durr, I. S. aND KoSTER, J. 2001. On algorithms for permuting large entries to the diagonal of a
sparse matrix. SIAM oJ. Matrix Anal. Appl. 22, 4, 973-996.

Fu, C., Jiao, X., anD Yang, T. 1998. Efficient sparse LU factorization with partial pivoting on
distributed memory architectures. IEEE Trans. Para. Distr. Syst. 9, 2, 109-125.

GILBERT, J. R. anD L1y, J. W. 1993. Elimination structures for unsymmetric sparse LU factors.
SIAM J. Matrix Anal. Appl. 14, 334-352.

GupTa, A, 2000. WSMP: Watson Sparse Matrix Package. Tech. rep., IBM research division, T. J.
Watson Research Center, Yorktown Heights. http://www.cs.umn.edu/~agupta/wsmp.html.

GUPTA, A., KarYPIS, G., AND KuMAR, V. 1997. Highly scalable parallel algorithms for sparse matrix
factorization. IEEE Trans. Para. Dist. Syst. 8, 502-520.

Heata, M. T., Ng, E., AND PEvTON, B.W. 1991. Parallel algorithms for sparse linear systems. SIAM
Rev. 33, 420-460.

Heata, M. T. anD RacHavaN, P. 1997. Performance of a fully parallel sparse solver. Int. oJ.
Supercomput. Appl. 11, 1, 49-64.

Henon, P., RaMET, P., AND RomaN, J. 1999. A mapping and scheduling algorithm for parallel sparse
fan-in numerical factorization. In EuroPar’99 Parallel Processing. Lecture Notes in Computer
Science, No. 1685. Springer-Verlag, Berlin, Heidelberg, New York, 1059-1067.

HSL. 2000. A collection of Fortran codes for large scale scientific computation. http:/www.
cse.clrc.ac.uk/Activity/HSL.

Karyris, G. anp Kumar, V. 1998. MENS—A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices—
Version 4.0. University of Minnesota.

L1, X. S. anp DEMMEL, J. W, 1998. Making sparse Gaussian elimination scalable by static pivoting.
In Proceedings of SC98. Orlando, Florida. http://www.supercomp.org/sc98/.

L1, X. S. anD DEMMEL, J. W, 1999. A scalable sparse direct solver using static pivoting. In Proceed-
ings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing. San Antonio,
Texas. http://www.siam.org/meetings/pp99/.

Li, X. S., DEmMEL, J. W., BaiLey, D. H., HEnry, G., Hipa, Y., ISKANDAR, J., Kanan, W., KapPur, A.,
MarTin, M. C., Tung, T., aND Yoo, D. J. 2000. Design, Implementation and Testing of Extended
and Mixed Precision BLAS. Tech. Rep. LBNL-45991, Lawrence Berkeley National Laboratory,
Berkeley. June. (also LAPACK Working Note #149). Submitted to ACM Trans. Math. Soft.

Ly, J. W.H. 1985. Modification of the minimum degree algorithm by multiple elimination. ACM
Trans. Math. Soft. 11, 2, 141-153.

NageL, W. E., ArnoLD, A., WEBER, M., Hoppg, H.-C., AND SoLcHENRACH, K. 1996. VAMPIR: Visual-
ization and Analysis of MPI resources. Supercomput. 12, 1 (Jan.), 69-80.

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

Analysis and Comparison of Two Distributed Memory Sparse Solvers . 421

Ng, E. G. anp Peyron, B. W. 1993 A supernodal Cholesky factorization algorithm for shared-
memory multiprocessors. SIAM oJ. Sci. Stat. Comput. 14, 761-769.

RoruBeEG, E. 1994 Efficient sparse Cholesky factorization on distributed-memory multiproces-
sors. In Proceedings Fifth SIAM Conference on Applied Linear Algebra, J. Lewis Ed. SIAM Press,
Philadelphia, 141.

ScHENK, O., GARTNER, K., AND FicHTNER, W. 2000 Efficient sparse LU factorization with left-right
looking strategy on shared memory multiprocessors. BIT 40, 1, 158-176.

Received December 2000; revised July 2001; accepted October 2001

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

